Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(15): 19571-19584, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38564737

RESUMO

Bioinspired photoactive composites, in terms of photodynamic inactivation, cost-effectiveness, and biosafety, are promising alternatives to antibiotics for combating bacterial infections while avoiding antibacterial resistance. However, the weak bacterial membrane affinity of the photoactive substrate and the lack of synergistic antibacterial effect remain crucial shortcomings for their antibacterial applications. Herein, we developed a hydrophobic film from food antioxidant lauryl gallate covalently functionalized chitosan (LG-g-CS conjugates) through a green radical-induced grafting reaction that utilizes synergistic bacteria capture, contact-killing, and photodynamic inactivation activities to achieve enhanced bactericidal and biofilm elimination capabilities. Besides, the grafting reaction mechanism between LG and CS in the ascorbic acid (AA)/H2O2 redox system was further proposed. The LG-g-CS films feature hydrophobic side chains and photoactive phenolic hydroxyl groups, facilitating dual bactericidal activities through bacteria capture and contact-killing via strong hydrophobic and electrostatic interactions with bacterial membranes as well as blue light (BL)-driven photodynamic bacterial eradication through the enhanced generation of reactive oxygen species. As a result, the LG-g-CS films efficiently capture and immobilize bacteria and exhibit excellent photodynamic antibacterial activity against model bacteria (Escherichia coli and Staphylococcus aureus) and their biofilms under BL irradiation. Moreover, LG-g-CS films could significantly promote the healing process of S. aureus-infected wounds. This research demonstrates a new strategy for designing and fabricating sustainable bactericidal and biofilm-removing materials with a high bacterial membrane affinity and photodynamic activity.


Assuntos
Anti-Infecciosos , Quitosana , Ácido Gálico/análogos & derivados , Infecções Estafilocócicas , Humanos , Staphylococcus aureus , Quitosana/química , Peróxido de Hidrogênio/farmacologia , Anti-Infecciosos/química , Antibacterianos/química , Cicatrização , Escherichia coli , Biofilmes
2.
Food Chem ; 447: 139035, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38507951

RESUMO

Excessive sodium intake is a major contributor to the incidence of cardiovascular diseases. The objective of this study was to prepare, isolate, and characterize peptides from bovine bone protein and investigate the salty/salt-enhancing mechanism of peptides. 1032 peptides were identified in the enzymatic hydrolysates of bovine bone protein and were further screened by the composition of amino acid residues and molecular docking analysis. 5 peptides were finally selected for solid-phase synthesis, and KER showed a better salty taste by sensory verification. Moreover, the synergistic effect of KER in NaCl and MSG solution could enhance the salty intensity by 65.26 %. The binding of KER to the salty receptor (TMC4) was driven by hydrogen bonding and electrostatic interactions with a binding energy of -88.0734 kcal/mol. This work may provide a new approach to efficiently screen salty peptides from natural food materials, which were expected as a taste enhancer used in salt-reducing foods.


Assuntos
Cloreto de Sódio , Paladar , Animais , Bovinos , Cloreto de Sódio/farmacologia , Simulação de Acoplamento Molecular , Cloreto de Sódio na Dieta , Peptídeos/farmacologia
3.
Int J Mol Sci ; 24(21)2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37958831

RESUMO

Plant proteins are a good source of active peptides, which can exert physiological effects on the body. Predicting the possible activity of plant proteins and obtaining active peptides with oral potential are challenging. In this study, the potential activity of peptides from Zizyphus jujuba proteins after in silico simulated gastrointestinal digestion was predicted using the BIOPEP-UWM™ database. The ACE-inhibitory activity needs to be further investigated. The actual peptides in mouse intestines after the oral administration of Zizyphus jujuba protein were collected and analyzed, 113 Zizyphus jujuba peptides were identified, and 3D-QSAR models of the ACE-inhibitory activity were created and validated using a training set (34 peptides) and a test set (12 peptides). Three peptides, RLPHV, TVKPGL and KALVAP, were screened using the 3D-QSAR model and were found to bind to the active sites of the ACE enzyme, and their IC50 values were determined. Their values were 6.01, 3.81, and 17.06 µM, respectively. The in vitro digestion stabilities of the RLPHV, TVKPGL, and KALVAP peptides were 82%, 90%, and 78%. This article provides an integrated method for studying bioactive peptides derived from plant proteins.


Assuntos
Inibidores da Enzima Conversora de Angiotensina , Ziziphus , Animais , Camundongos , Inibidores da Enzima Conversora de Angiotensina/química , Ziziphus/metabolismo , Peptídeos/química , Peptidil Dipeptidase A/metabolismo , Proteínas de Plantas , Digestão , Angiotensinas
4.
Foods ; 12(20)2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37893744

RESUMO

Salmonella infection has emerged as a global health threat, causing death, disability, and socioeconomic disruption worldwide. The rapid and sensitive detection of Salmonella is of great significance in guaranteeing food safety. Herein, we developed a colorimetric/fluorescent dual-mode method based on a DNA-nanotriangle programmed multivalent aptamer for the sensitive detection of Salmonella. In this system, aptamers are precisely controlled and assembled on a DNA nanotriangle structure to fabricate a multivalent aptamer (NTri-Multi-Apt) with enhanced binding affinity and specificity toward Salmonella. The NTri-Multi-Apt was designed to carry many streptavidin-HRPs for colorimetric read-outs and a large load of Sybr green I in the dsDNA scaffold for the output of a fluorescent signal. Therefore, combined with the magnetic separation of aptamers and the prefabricated NTri-Multi-Apt, the dual-mode approach achieved simple and sensitive detection, with LODs of 316 and 60 CFU/mL for colorimetric and fluorescent detection, respectively. Notably, the fluorescent mode provided a self-calibrated and fivefold-improved sensitivity over colorimetric detection. Systematic results also revealed that the proposed dual-mode method exhibited high specificity and applicability for milk, egg white, and chicken meat samples, serving as a promising tool for real bacterial sample testing. As a result, the innovative dual-mode detection method showed new insights for the detection of other pathogens.

5.
J Food Sci ; 88(12): 4974-4987, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37799107

RESUMO

Edible fungi are rich in nutrients and have unique umami taste, which varies with genotypes, growth conditions, and harvest time. In this study, umami compounds in 12 species of edible fungi are analyzed and identified by electronic tongue. Through principal component analysis and discriminant factor analysis, these 2 methods could be successfully distinguished the variety of 12 edible fungi. Besides, the umami intensity of edible fungi soup is also evaluated by sensory and chemical analysis methods, for example, Tricholoma matsutake is 5.60 ± 0.34 and 5.17 ± 0.38, Coprinus comatus is 7.70 ± 0.23 and 9.83 ± 0.34 through sensory evaluation and electronic tongue respectively, followed by establishing the correlation from the response data by PLS (partial least squares analysis). According to the PLS model, with a correlation coefficients of calibration models greater than 0.7 and the low root mean square error of calibration and root mean square error of prediction values, the results correlate well with each other. Therefore, we can indicate that the electronic tongue is able to analyze and evaluate the umami intensity of edible fungi to some extent.


Assuntos
Nariz Eletrônico , Paladar , Análise dos Mínimos Quadrados
6.
Appl Microbiol Biotechnol ; 107(16): 5107-5118, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37401996

RESUMO

Zearalenone (ZEN) is a mycotoxin that causes serious threats to human health. People are exposed to ZEN contamination externally and internally through many ways, while environmental-friendly strategies for efficient elimination of ZEN are urgently needed worldwide. Previous studies revealed that the lactonase Zhd101 from Clonostachys rosea can hydrolyze ZEN to low toxicity compounds. In this work, the enzyme Zhd101 was conducted with combinational mutations to enhance its application properties. The optimal mutant (V153H-V158F), named Zhd101.1, was selected and introduced into the food-grade recombinant yeast strain Kluyveromyces lactis GG799(pKLAC1-Zhd101.1), followed by induced expression and secretion into the supernatant. The enzymatic properties of this mutant were extensively examined, revealing a 1.1-fold increase in specific activity, as well as improved thermostability and pH stability, compared to the wild-type enzyme. The ZEN degradation tests and the reaction parameters optimization were carried out in both solutions and the ZEN-contaminated corns, using the fermentation supernatants of the food-grade yeast strain. Results showed that the degradation rates for ZEN by fermentation supernatants reached 96.9% under optimal reaction conditions and 74.6% in corn samples, respectively. These new results are a useful reference to zearalenone biodegradation technologies and indicated that the mutant enzyme Zhd101.1 has potential to be used in food and feed industries. KEY POINTS: • Mutated lactonase showed 1.1-fold activity, better pH stability than the wild type. • The strain K. lactis GG799(pKLAC1-Zhd101.1) and the mutant Zhd101.1 are food-grade. • ZEN degradation rates by supernatants reached 96.9% in solution and 74.6% in corns.


Assuntos
Calosidades , Micotoxinas , Zearalenona , Humanos , Zearalenona/metabolismo , Mutação
7.
Int J Mol Sci ; 24(7)2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37047555

RESUMO

Flavonoids are easily destroyed and their activity lost during gastrointestinal digestion. Protein-based nanocomplexes, a delivery system that promotes nutrient stability and bioactivity, have received increasing attention in recent years. This study investigated the stability, inhibitory activity against α-glucosidase and interaction mechanisms of protein-based nanocomplexes combining whey protein isolate (WPI), soybean protein isolate (SPI) and bovine serum albumin (BSA) with flavonoids (F) from A. keiskei using spectrophotometry, fluorescence spectra and molecular docking approaches. The results show that the flavonoid content of WPI-F (23.17 ± 0.86 mg/g) was higher than those of SPI-F (19.41 ± 0.56 mg/g) and BSA-F (20.15 ± 0.62 mg/g) after simulated digestion in vitro. Furthermore, the inhibition rate of WPI-F (23.63 ± 0.02%) against α-glucosidase was also better than those of SPI-F (18.56 ± 0.02%) and BSA-F (21.62 ± 0.02%). The inhibition rate of WPI-F increased to nearly double that of F alone (12.43 ± 0.02%) (p < 0.05). Molecular docking results indicated that the protein-flavonoids (P-F) binding occurs primarily through hydrophobic forces, hydrogen bonds and ionic bonds. Thermodynamic analysis (ΔH > 0, ΔS > 0) indicated that the P-F interactions are predominantly hydrophobic forces. In addition, the absolute value of ΔG for WPI-F is greater (-30.22 ± 2.69 kJ mol-1), indicating that WPI-F releases more heat energy when synthesized and is more conducive to combination. This paper serves as a valuable reference for the stability and bioactivity of flavonoids from A. keiskei.


Assuntos
Angelica , Flavonoides , Flavonoides/farmacologia , Flavonoides/química , alfa-Glucosidases/metabolismo , Simulação de Acoplamento Molecular , Angelica/metabolismo , Ligação Proteica , Termodinâmica , Soroalbumina Bovina/química , Espectrometria de Fluorescência
8.
Crit Rev Food Sci Nutr ; 63(27): 8781-8795, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35373656

RESUMO

Foul-smelling odors are main quality defects of dry-cured ham, which are connected with the excessive degradation of the structural proteins and excessive oxidation of lipids caused by the abnormal growth of spoilage microorganisms, threatening the development of dry-cured ham industry. Characterizing the key microorganisms and metabolites resulted in the spoilage of dry-cured ham, and discussing the relationship between spoilage microorganisms and metabolites are the key aspects to deeply understand the formation mechanism of off-odor in dry-cured ham. Until now, there is no detailed discussion or critical review on the role of spoilage microorganisms in developing the off-odor of dry-cured ham, and the regulation of off-odor and spoilage microorganisms by starter cultures has been not discussed. This review shows the recent achievement in the off-odor formation mechanism of dry-cured ham, and outlines the potential regulation of off-odor defects in dry-cured ham by starter cultures. Results from current research show that the abnormal growth of Lactic acid bacteria, Micrococcaceae, Enterobacteriaceae, Yeasts and Molds plays a key role in developing the off-odor defects of dry-cured ham, while the key spoilage microorganisms of different type hams are discrepant. High profile of aldehydes, acids, sulfur compounds and biogenic amines are responsible for off-odor development in spoiled dry-cured ham. Several starter cultures derived from these species of Staphylococcus, Penicillium, Debaryomyces, Pediococcus and Lactobacillus show a great potential to prevent microbiological hazards and improve flavor quality of dry-cured ham, whereas, the ecology, function and compatibility of these starter cultures with the processing parameters of dry-cured ham need to be further evaluated in the future.


Assuntos
Produtos da Carne , Penicillium , Carne de Porco , Odorantes , Penicillium/metabolismo , Lactobacillus , Olfato , Produtos da Carne/microbiologia
9.
Food Chem ; 404(Pt A): 134562, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36244067

RESUMO

Umami peptides have been the focus of umami studies in recent years because of their high nutritional value and flavor activity. However, the existing screening methods of umami peptides were cumbersome, complex, time-consuming and laborious, and it was difficult to achieve high-throughput screening. In this study, a novel umami peptide rapid screening model was designed and by using lamb bone aqueous extract as raw material, through the step-by-step screening of peptidomics, machine learning methods, and molecular docking technology. Results showed that six novel peptides about lamb bones were obtained, which verified the feasibility of the model and could be used for high-throughput screening of umami peptides. Results of molecular docking between umami peptide and T1R3 subunit revealed that the main interaction forces were hydrogen bonding and electrostatic interaction, and the key binding sites were GLU277 and SER146. It provides the basis for studying the binding mechanism of umami peptide.


Assuntos
Receptores Acoplados a Proteínas G , Paladar , Ovinos , Animais , Simulação de Acoplamento Molecular , Receptores Acoplados a Proteínas G/metabolismo , Peptídeos/química , Aprendizado de Máquina
10.
Food Chem ; 405(Pt A): 134886, 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36371836

RESUMO

To explore the saltiness enhancement effect and mechanism of umami peptides, umami peptides from Ruditapes philippinarum and ham were mixed with NaCl and determined using electronic tongue, sensory evaluation, and the aroma chicken model (ACM), then transmembrane channel-like protein 4(TMC4) receptor was constructed for molecular docking. The results showed that KEMQKN, NGKET, RGEPNND, AHSVRFY, LSERYP, NRTF, TYLPVH, EV, AGAGPTP, and GPAGPAGPR had saltiness enhancement effect, which could be increased to 0.4-0.6 % NaCl salty taste in 0.3 % NaCl. Under neutral conditions (pH6.5), most umami peptides were in negative ion state which may be the main reason that umami peptides could bind to the TMC4 receptor and enhance saltiness. The lowest docking energy was -113.325 kcal/mol among 10 peptides and the active sites Lys568, Trp145, Tyr565, Arg151, and Gln155 in TMC4 may play a key role. Thus, this study provides basic theory and data for salt-reduction strategies.


Assuntos
Bivalves , Paladar , Animais , Cloreto de Sódio , Simulação de Acoplamento Molecular , Peptídeos/química , Bivalves/metabolismo , Percepção
11.
J Sci Food Agric ; 103(8): 3915-3925, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36335574

RESUMO

BACKGROUND: The traditional screening method for umami peptide, extracted from porcine bone, was labor-intensive and time-consuming. In this study, the rapid screening method and molecular mechanism of umami peptide was investigated. RESULTS: This article showed that a more precisely rapid screening method with composite machine learning and molecular docking was used to screen the potential umami peptide from porcine bone. As reference, 24 reported umami peptides were predicated by composite machine learning, with the accuracy of 86.7%. In this study, potential umami peptide sequences from porcine bone were screened by UMPred-FRL, Umami-MRNN Demo, and molecular docking was used to provide further screening. Finally, nine peptides were screened and verified as umami peptides by this method: LREY, HEAL, LAKVH, FQKVVA, HVKELE, AEVKKAP, EAVEKPQS, KALSEEL and KKMFETES. The hydrogen bonding was deemed to be the main interaction force with receptor T1R3, and domain binding sites were Ser146, His121 and Glu277. The result demonstrated the feasibility of machine learning assisted T1R1/T1R3 receptor for rapid screening umami peptides. The screening method would not only adapt to screen umami peptides from porcine bone but possibly applied for other sources. It also provided a reference for rapid screening of umami peptides. CONCLUSION: The manuscript lays a rapid screening method in screening umami peptide, and nine umami peptides from porcine bone were screened and identified. © 2022 Society of Chemical Industry.


Assuntos
Peptídeos , Receptores Acoplados a Proteínas G , Suínos , Simulação de Acoplamento Molecular , Receptores Acoplados a Proteínas G/metabolismo , Peptídeos/química , Sítios de Ligação , Ligação de Hidrogênio , Paladar , Animais
12.
Curr Res Food Sci ; 5: 2162-2170, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36387592

RESUMO

Bioactive peptides are widely used in functional foods due to their remarkable efficacy, selectivity, and low toxicity. However, commercially produced bioactive peptides lack quality stability between batches. Furthermore, the efficacies of bioactive peptides cannot be guaranteed in vivo due to gastrointestinal digestion and rapid plasma, liver, and kidney metabolism. The problem of poor stability has restricted the development of peptides. Bioactive peptide stability assessments use different stability assays, so the results of different studies are not always comparable. This review summarizes the quality stability challenges in the enzymatic hydrolysis production of bioactive peptides and the metabolism stability challenges after oral administration. Future directions on the strategies for improving their stability are provided. It was proposed that we use fingerprinting as a quality control measure using qualitative and quantitative characteristic functional peptide sequences. The chemical modification and encapsulation of bioactive peptides in microcapsules and liposomes are widely used to improve the digestive and metabolic stability of bioactive peptides. Additionally, the establishment of a universal stability test and a unified index would greatly improve uniformity and comparability in research into bioactive peptides. In summary, the reliable evaluation of stability is an essential component of peptide characterization, and these ideas may facilitate further development and utilization of bioactive peptides.

13.
Front Nutr ; 9: 993744, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36313093

RESUMO

A novel angiotensin-converting enzyme (ACE) inhibitory peptide ser-ala-ser-val-ile-pro-val-ser-ala-val-arg-ala (SASVIPVSAVRA) was purified and identified from yak bone by Electrospray Ionization-Time of Flight-Mass Spectrometry (ESI-TOF-MS). Results in vitro showed that the peptide exhibited strong ACE inhibition activities with an IC50 of 54.22 µM. Molecular docking results showed the binding between the peptide SASVIPVSAVRA and ACE mainly driven by van der Waals forces, hydrogen bonds and metal receptor. Interestingly, the ACE inhibition activities of the peptide increased about 19% after digestion, but none of its metabolites showed stronger activity than it. The in vivo experiment showed that the antihypertensive effect of peptide SASVIPVSAVRA at dose of 30 mg/kg is nearly equal to Captopril at dose of 10 mg/kg to spontaneously hypertensive rats (SHRs). The antihypertensive effect mechanism of SASVIPVSAVRA should be further studied through plasma metabolomics and bioanalysis. Structure analysis of amino acids and peptides produced during digestion may help better understand the antihypertensive effect of peptides.

14.
Molecules ; 27(19)2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36235163

RESUMO

Angelica keiskei contains a variety of bioactive compounds including chalcone, coumarin, and phytochemicals, endowing it with pharmacological effects such as lipid-lowering activity, antitumor activity, liver protection, and nerve protection. This study aims to study the hypoglycemic and hypolipidemic effects of the flavonoid-rich extract from Angelica keiskei (FEAK) in an effort to exploit new applications of FEAK and increase its commercial value. In this paper, flavonoid compounds in Angelica keiskei were extracted using 50% ethanol, and the contents of the flavonoid compounds were analyzed by UPLC-MS/MS. Then, the hypoglycemic and hypolipidemic activities of the FEAK were investigated through in vitro enzyme activity and cell experiments as well as establishing in vivo zebrafish and Caenorhabditis elegans (C. elegans) models. The UPLC-MS/MS results show that the major flavonoid compounds in the FEAK were aureusidin, xanthoangelol, kaempferol, luteolin, and quercetin. The inhibitory rates of the FEAK on the activity of α-amylase and cholesterol esterase were 57.13% and 72.11%, respectively. In cell lipid-lowering experiments, the FEAK significantly reduced the total cholesterol (TC) and total triglyceride (TG) levels in a dose-dependent manner, with 150 µg/mL of FEAK decreasing the intracellular levels of TC and TG by 33.86% and 27.89%, respectively. The fluorescence intensity of the FEAK group was 68.12% higher than that of the control group, indicating that the FEAK exhibited hypoglycemic effects. When the concentration of the FEAK reached 500 µg/mL, the hypoglycemic effect on zebrafish reached up to 57.7%, and the average fluorescence intensity of C. elegans in the FEAK group was 17% lower than that of the control group. The results indicate that the FEAK had hypoglycemic and hypolipidemic activities. The findings of this study provide theoretical references for the high-value utilization of Angelica keiskei and the development of natural functional food with hypoglycemic and hypolipidemic activities.


Assuntos
Angelica , Chalconas , Angelica/química , Animais , Caenorhabditis elegans , Chalconas/química , Colesterol , Cromatografia Líquida , Cumarínicos , Etanol/química , Flavonoides/farmacologia , Hipoglicemiantes/farmacologia , Quempferóis , Lipídeos , Luteolina , Extratos Vegetais/farmacologia , Quercetina , Esterol Esterase , Espectrometria de Massas em Tandem , Triglicerídeos , Peixe-Zebra , alfa-Amilases
15.
Biomaterials ; 288: 121697, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35953329

RESUMO

To shorten the complex and tedious process of traditional umami peptide identification, a novel model based on common feature pharmacophore (HipHop, a ligand molecule-based screening method) and molecular docking (a receptor protein-based screening method) was established for umami peptide screening. In this study, HipHop was used to perform a preliminary screening of peptides. Dipeptides with potential umami activity were docked into the umami taste receptor T1R1/T1R3 for a second screening. Twenty previously unreported umami dipeptides identified through virtual screening were validated using sensory evaluation and electronic tongue analysis. All 20 dipeptides (HE, HD, KE, EH, ET, EQ, DH, DR, DQ, DN, DY, DM, DI, DV, QE, QD, NE, ND, CE, and SE) had umami taste with umami threshold values ranging from 0.094 to 1.517 mmol/L. Therefore, when we increased the screening criteria for docking energy to -60 kcal/mol, the virtual screening results had 100% accuracy. The T1R1-peptide complexes of the four dipeptides with the lowest umami threshold values were subjected to molecular dynamics (MD) simulations for 100 ns, and the results showed that the four umami dipeptides remained in the starting active cavity. Overall, this screening strategy could be applied to the rapid screening of umami peptides in food products.


Assuntos
Dipeptídeos , Receptores Acoplados a Proteínas G , Dipeptídeos/química , Simulação de Acoplamento Molecular , Peptídeos/química , Paladar
16.
Food Chem (Oxf) ; 4: 100101, 2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-35769399

RESUMO

We separated a novel functional peptide IFPPKPKDTL from porcine plasma hydrolysate by chromatography, HPLC, and identified by Q Exactive LC-MS/MS. Results showed that IFPPKPKDTL had a significant ability of ACE inhibition (76.6%) likely due to the presence of hydrophobic, aromatic, and acidic amino acids that can inactivate ACE by binding Zn2+, providing a hydrogen atom to maintain the link between ACE and the peptide. Furthermore, the ACE inhibition of synthetic IFPPKPKDTL was improved by 15.6% after in vitro digestion. Additionally, the systolic blood pressure and diastolic blood pressure of spontaneously hypertensive rats gavaged by the peptide (30 mg/kg). Thereby, ACE inhibitory peptide IFPPKPKDTL from porcine plasma was stable and has potential functional value.

17.
Food Chem ; 394: 133504, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-35749874

RESUMO

The existing technology used for screening umami peptides is time-consuming and labor-intensive, making it difficult to meet the requirements of rapid screening of peptides. In this study, a high-throughput screening method for umami peptides was established based on peptidomics and virtual screening including the mass spectrometry, iUmami-SCM, PeptideRanker, and T1R1/T1R3 receptor. Subsequently, they were characterized and validated using sensory evaluation and electronic tongue. Results showed that 18 potential umami peptides were screened from two clams. Among them, 16 peptides had umami characteristics with thresholds range 0.123-1.481 mmol/L, and the accuracy of the screening method was about 88.9%. Additionally, active sites such as Tyr143, Gly144, Ser146, Ala145, His121, Ser123, and Glu277 may play a critical role in flavor presentation by molecular docking with T1R1/T1R3. The paper could provide a fast and reliable method for screening umami peptides as well as lay the foundation for novel strategies for evaluating umami taste.


Assuntos
Bivalves , Receptores Acoplados a Proteínas G , Animais , Simulação de Acoplamento Molecular , Peptídeos/química , Paladar
18.
Front Cell Infect Microbiol ; 12: 853064, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35521218

RESUMO

Salmonella enterica serovars Enteritidis (S. Enteritidis) can survive extreme food processing environments including bactericidal sodium hypochlorite (NaClO) treatments generally recognized as safe. In order to reveal the molecular regulatory mechanisms underlying the phenotypes, the overall regulation of genes at the transcription level in S. Enteritidis after NaClO stimulation were investigated by RNA-sequencing. We identified 1399 differentially expressed genes (DEG) of S. Enteritidis strain CVCC 1806 following treatment in liquid culture with 100 mg/L NaClO for 20 min (915 upregulated and 484 downregulated). NaClO stress affects the transcription of genes related to a range of important biomolecular processes such as membrane damage, membrane transport function, energy metabolism, oxidative stress, DNA repair, and other important processes in Salmonella enterica. First, NaClO affects the structural stability of cell membranes, which induces the expression of a range of outer and inner membrane proteins. This may lead to changes in cell membrane permeability, accelerating the frequency of DNA conversion and contributing to the production of drug-resistant bacteria. In addition, the expression of exocytosis pump genes (emrB, yceE, ydhE, and ydhC) was able to expel NaClO from the cell, thereby increasing bacterial tolerance to NaClO. Secondly, downregulation of genes related to the Kdp-ATPase transporter system (kdpABC) and the amino acid transporter system (aroP, brnQ and livF) may to some extent reduce active transport by bacterial cells, thereby reducing their own metabolism and the entry of disinfectants. Downregulation of genes related to the tricarboxylic acid (TCA) cycle may drive bacterial cells into a viable but non-culturable (VBNC) state, resisting NaClO attack by reducing energy metabolism. In addition, significant upregulation of genes related to oxidative stress could mitigate damage caused by disinfectants by eliminating alkyl hydroperoxides, while upregulation of genes related to DNA repair could repair damage to bacterial cells caused by oxidative stress. Therefore, this study indicated that S. Enteritidis has genomic mechanisms to adapt to NaClO stress.


Assuntos
Desinfetantes , Salmonella enterica , Desinfetantes/metabolismo , Desinfetantes/farmacologia , Salmonella enterica/genética , Salmonella enteritidis/genética , Sorogrupo , Hipoclorito de Sódio/farmacologia , Transcriptoma
19.
Food Chem ; 388: 133059, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35483294

RESUMO

To investigate the effects of ultrasonic treatment on proteolysis and taste development of defective dry-cured ham, sensory attributes, enzyme activities, protein degradation and free amino acids were evaluated after different ultrasonic treatments. The ultrasonic treatment of 1000 W & 50 °C significantly increased the intensities of overall taste, umami, sweetness and richness, and decreased bitterness values compared with other groups. The residual activities of DPP I and cathepsin B + L in 1000 W & 50 °C maintained 48.71% and 24.94% of control group, respectively; the intense degradation of structural proteins was observed by label-free proteomics, accordingly. The contents of total free amino acids from 4522.64 mg/100 g muscles in control group increased to 5838.75 mg/100 g muscles in 1000 W & 50 °C; the largest increase of sweet and umami amino acids observed in 1000 W & 50 °C was responsible for the improvement of taste quality of defective dry-cured ham.


Assuntos
Produtos da Carne , Carne de Porco , Aminoácidos , Manipulação de Alimentos , Produtos da Carne/análise , Proteólise , Paladar , Ultrassom
20.
J Agric Food Chem ; 70(16): 4934-4941, 2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35436096

RESUMO

Diabetes is a major metabolic disease that requires long-term pharmacotherapy. Bioactive peptides have unique advantages such as higher potency, selectivity, and safety over small molecules and have achieved great success in the treatment of diabetes. We previously isolated a dipeptidyl peptidase-IV (DPP-IV) inhibitory peptide VPLVM with IC50 = 99.68 µM from the protein hydrolysates of broccoli stems and leaves. Here, we evaluated the interaction with DPP-IV, transport, stability, and in vivo hypoglycemic effects of VPLVM. VPLVM interacted closely and steadily with DPP-IV at S1 and S2 pockets. VPLVM had a good gastrointestinal enzyme resistance and was transported through the Caco-2 cell monolayer via paracellular diffusion and by the PepT1 with a Papp of 6.96 × 10-7 cm/s. VPLVM has a t1/2 of 12.56 ± 0.41 min in vitro plasma stability. In the oral glucose tolerance test, VPLVM showed an excellent hypoglycemic effect at 30 min after administration. VPLVM has potential as a candidate for the treatment of hyperglycemia.


Assuntos
Brassica , Diabetes Mellitus , Inibidores da Dipeptidil Peptidase IV , Brassica/metabolismo , Células CACO-2 , Dipeptidil Peptidase 4/química , Inibidores da Dipeptidil Peptidase IV/química , Humanos , Hipoglicemiantes/farmacologia , Peptídeos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...